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The conditions for the formation of periodic concentrations due to multicomponent diffusion
of reactive components are found. These relations are expressed in terms of the diffusion coeffi-
cients and the parameters of the reaction kinetics.

In our previous paper1 we have discussed some possible anomalies in multicomponent
diffusion of non-reacting components. The inclusion of the reactions among the
components may lead (under well defined conditions) to some unexpected pheno-
mena.

Let us have a system in which a reaction X1 + X2 = X3 can take place. The
concentration c1, c2 satisfy the equations in refs2'3

= D V2c1 + D12 V2c2 + f1(c1, c2),

= D21 V2c1 + D22 V2c2 + f2(c1, c2),

(1)

where D1 are the difussion coefficients and f1, 12 represent the reaction rates of the
components. The concentration of the third component is determined by the respec-
tive mass balance. For the sake of further references we remind the inequalities4

D11 > 0, D22> 0 D11D22 — D12D21 > 0 (2)

The Onsager theory of irreversible processes (see e.g. refs2'3) yields one reciprocity
relation (for a ternary system) among the diffusion coefficients

G12D11 + G22D21 = G11D12 + G21D22 (3)

with known quantities G. There are no restrictions on the signs of the interdiffusion
coefficients D12 and D21.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



Multicomponent Diffusion of Reactive Components 1581

We shall deal with the reactions represented by the linear functions

f(c1, c2) = —xi(ci — x1) — (4)

where cx and x are the characteristic constants. This set corresponds to the decay
reactions. The standard reaction formula

f — k'c = k1c1c2

can be reduced to the linear form (see Eq. (4)) for small deviations ci — c1 c7
from the equilibrium concentrations c7. In that case we can neglect small term
(c1 — c) (c2 — c), i.e.

CIC2 = [c + (cl — ct)] [c + (c2 — c)] cc +
+ c(c — c) + cflc2 — c) = c(ci — 4c7) + C7(C2 —

This linear approximation corresponds to Eq. (4).
The stationary situation is described by the equations

D11 V2c1 + D12 V2c2 — cx11(c1
— — cz(c — 2) = 0

D21 V2c1 + D22 V2c2 — x21(c1
— x1) —

c22(c2
— x2) = 0 (5)

RESULTS

We outline the method of calculation of the set (5) and summarize the results of
practical interest. The most straightforward way is to start with the one-dimensional
case, i.e. ci c(x). The set (5) then reads

D11u'(x) + D12u(x) — x11u1(x) —
cx12u2(x) = 0

D21u'(x) + D22u(x) — 21u1(x) —
ct22u2(x) = 0,

where

u1(x) c1(x) — x1 u2(x) c2(x) — . (6)

After simple rearrangements we reduce the set to the standard form

u'(x) = a11u1(x) + a12u2(x)

u(x) = a21u1(x) + a22u2(x) , (7)
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where
Da,, = — c21D12 Da,2 = ct12D22 —

Da21 = — ct11D21 Da22 cx22D11 — cs12D21 (8)

D = D11D22 — D12D21> 0.

Insertion u1 = A e, u2 = B e into Eqs (7) yields the characteristic equation

(22 — a11) (22 — a22) — a12a21 = 0

It is convenient to express the roots in the form

21,2,3,4 = ±(a ± b)"2, (9)
where

a = +(a11 + a22) b = [(a1, — a22)2 + 4a12a21]"2 (9')

The analysis of the solutions depends on the properties of the roots (single, multiple,
real or complex). We present here two of the most interesting situations.

If (a11 — a,2)2 + 4a12a21 > 0, then b is a real number. In the case

a±b<0 (10)

all roots in relations (9) are simple and pure imaginary. Let us denote

= (—a — b)1'2 Q2 = (—a + b)"2
= iQ1 22 IQ 2 1Q2 24 = —IQ,.

We drop the routine calculations and bring the final results

c1(x) + sin (x + ,) + Y sin (Q2x + 2) (11)

c2(x) = — (y1/a,2)( + a11) sin (Q1x + o1) —

— (y2/a12)( + a11) sin (2x + 2), (12)

where Yi' Y2' 2 are the integration constants. These constants are usually ex-
pressed in terms of the values of concentrations c1, c2 and their gradients dc1/dx,
dc2/dx for some particular point.

The solutions (ii) and 12) are represented as a superposition of two periodic
(goniometric) functions. Such a superposition is not in general a periodic function.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



Multicomponent Diffusion of Reactive Components 1583

Nothwithstanding the linear combination of two concentrations

L1(x) = c2(x) + (1/a12) (a11 + Q)ci(x) = 2 + (1/a12)(a,, + ) +

+ (1/a12) ( — Y sin (o1x + (13)

is a periodic function with the period Pt 21r/Q1.
The second interesting case occurs when

a11a22 — a12a21 = (1/D)(x11x22 — l221) = 0. (14)

From (9') one gets

b = +(aii + a22)

and correspondingly

21,2 = ±(a11 + a22)"2 = 0.

Due to the double root 23 = 24 0 there appears the term A4 + A3x. If it is (as
in the previous case) a < 0, then

21,2 ±'? Q

The general solution then reads

c,(x) = + ysin(x + (5) + a,2(A4 + A3x)

c2(x) = 2 + y/2sin(Qx + (5) — a11(A4 + A3x)

where t a21/a,,
=

and y, (5, A3, A4 are the integration constants. The concentrations remain finite for
any x when A3 = 0, i.e.

c1(x) = + a12A4 + ysin(x + (5)

c2(x) = 2 — a11A4 + yp sin(Qx + (5). (/5)

The concentrations are periodic with the period p = 21r/Q. Let us emphasize that this
behaviour anticipates the validity of the relation (14).

The three-dimensional solutions of the set (5) can be found analogically. We
express the concentrations in terms of the three-dimensional Fourier integrals

— = $(k)e'd3k, (j 1,2).

Insertion of these expressions into the set (5) yields the equations for and the
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spectrum k. The next step is the construction of the general solutions. We drop
these technical calculations and bring the respective final results.

In the case of the validity of the conditions (10) one arrives at the solutions

c1(r) = + r'[A sin (1r) + B sin (Q2r)]

c2(r) — (a12r)( + a1) A sin (Q1r) +

+ ( + a11)Bsin(2r)] , (16)

where r (x2 + y2 + z2)'I2. A and B are the integration constants. The concentra-
tions c1, c2 are finite for any values of r. The validity of the solutions (16) can easily
be verified by inserting into the set (5).

The concentrations are expressed in the form of the linear combinations of two
periodic functions: the coefficients of this combinations are, however, inversely
proportional to r.

If the condition (14) is satisfied the solutions get the form

c1(r) = + a12B + (A/r)sin(Qr)
c2(r) = — a11B + (#A/r) sin (Qr). (17)

From the explicit solutions (ii), (15)—(17) one can determine the surfaces of the
same concentrations (isoconcentration surfaces), particularly the surfaces of the zero
concentrations. The condition c1(x0) = Cie defines the planes x = x0, and c.(r0) =

Cie determines the spheres r r0 of the same concentrations c01. The very existence
and the number of such surfaces is, however, dependent on the values of the integra-
tion constants.
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